Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1045, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828822

RESUMO

Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme response in all cases. Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility confirms the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response.


Assuntos
Microbiota , Bactérias , Água do Mar/microbiologia , Temperatura , Adaptação Fisiológica , Esterases/química
2.
Gut Microbes ; 14(1): 2106102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903014

RESUMO

The aim of this study was to monitor the impact of a preoperative low-calorie diet and bariatric surgery on the bacterial gut microbiota composition and functionality in severe obesity and to compare sleeve gastrectomy (SG) versus Roux-en-Y gastric bypass (RYGB). The study also aimed to incorporate big data analysis for the omics results and machine learning by a Lasso-based analysis to detect the potential markers for excess weight loss. Forty patients who underwent bariatric surgery were recruited (14 underwent SG, and 26 underwent RYGB). Each participant contributed 4 fecal samples (baseline, post-diet, 1 month after surgery and 3 months after surgery). The bacterial composition was determined by 16S rDNA massive sequencing using MiSeq (Illumina). Metabolic signatures associated to fecal concentrations of short-chain fatty acids, amino acids, biogenic amines, gamma-aminobutyric acid and ammonium were determined by gas and liquid chromatography. Orange 3 software was employed to correlate the variables, and a Lasso analysis was employed to predict the weight loss at the baseline samples. A correlation between Bacillota (formerly Firmicutes) abundance and excess weight was observed only for the highest body mass indexes. The low-calorie diet had little impact on composition and targeted metabolic activity. RYGB had a deeper impact on bacterial composition and putrefactive metabolism than SG, although the excess weight loss was comparable in the two groups. Significantly higher ammonium concentrations were detected in the feces of the RYGB group. We detected individual signatures of composition and functionality, rather than a gut microbiota characteristic of severe obesity, with opposing tendencies for almost all measured variables in the two surgical approaches. The gut microbiota of the baseline samples was not useful for predicting excess weight loss after the bariatric process.


Assuntos
Compostos de Amônio , Cirurgia Bariátrica , Microbioma Gastrointestinal , Obesidade Mórbida , Bactérias/genética , Cirurgia Bariátrica/métodos , Dieta , Fezes/microbiologia , Humanos , Metaboloma , Obesidade Mórbida/microbiologia , Obesidade Mórbida/cirurgia , Redução de Peso
3.
Comput Struct Biotechnol J ; 19: 6328-6342, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938409

RESUMO

Many microorganisms feed on the tissue and recalcitrant bone materials from dead animals, however little is known about the collaborative effort and characteristics of their enzymes. In this study, microbial metagenomes from symbionts of the marine bone-dwelling worm Osedax mucofloris, and from microbial biofilms growing on experimentally deployed bone surfaces were screened for specialized bone-degrading enzymes. A total of 2,043 taxonomically (closest match within 40 phyla) and functionally (1 proteolytic and 9 glycohydrolytic activities) diverse and non-redundant sequences (median pairwise identity of 23.6%) encoding such enzymes were retrieved. The taxonomic assignation and the median identity of 72.2% to homologous proteins reflect microbial and functional novelty associated to a specialized bone-degrading marine community. Binning suggests that only one generalist hosting all ten targeted activities, working in synergy with multiple specialists hosting a few or individual activities. Collagenases were the most abundant enzyme class, representing 48% of the total hits. A total of 47 diverse enzymes, representing 8 hydrolytic activities, were produced in Escherichia coli, whereof 13 were soluble and active. The biochemical analyses revealed a wide range of optimal pH (4.0-7.0), optimal temperature (5-65 °C), and of accepted substrates, specific to each microbial enzyme. This versatility may contribute to a high environmental plasticity of bone-degrading marine consortia that can be confronted to diverse habitats and bone materials. Through bone-meal degradation tests, we further demonstrated that some of these enzymes, particularly those from Flavobacteriaceae and Marinifilaceae, may be an asset for development of new value chains in the biorefinery industry.

4.
mSystems ; 6(1)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563781

RESUMO

The marine bone biome is a complex assemblage of macro- and microorganisms; however, the enzymatic repertoire to access bone-derived nutrients remains unknown. The bone matrix is a composite material made up mainly of organic collagen and inorganic hydroxyapatite. We conducted field experiments to study microbial assemblages that can use organic bone components as nutrient source. Bovine and turkey bones were deposited at 69 m depth in a Norwegian fjord (Byfjorden, Bergen). Metagenomic sequence analysis was used to assess the functional potential of microbial assemblages from bone surface and the bone-eating worm Osedax mucofloris, which is a frequent colonizer of whale falls and known to degrade bone. The bone microbiome displayed a surprising taxonomic diversity revealed by the examination of 59 high-quality metagenome-assembled genomes from at least 23 bacterial families. Over 700 genes encoding enzymes from 12 relevant enzymatic families pertaining to collagenases, peptidases, and glycosidases putatively involved in bone degradation were identified. Metagenome-assembled genomes (MAGs) of the class Bacteroidia contained the most diverse gene repertoires. We postulate that demineralization of inorganic bone components is achieved by a timely succession of a closed sulfur biogeochemical cycle between sulfur-oxidizing and sulfur-reducing bacteria, causing a drop in pH and subsequent enzymatic processing of organic components in the bone surface communities. An unusually large and novel collagen utilization gene cluster was retrieved from one genome belonging to the gammaproteobacterial genus Colwellia IMPORTANCE Bones are an underexploited, yet potentially profitable feedstock for biotechnological advances and value chains, due to the sheer amounts of residues produced by the modern meat and poultry processing industry. In this metagenomic study, we decipher the microbial pathways and enzymes that we postulate to be involved in bone degradation in the marine environment. We here demonstrate the interplay between different bacterial community members, each supplying different enzymatic functions with the potential to cover an array of reactions relating to the degradation of bone matrix components. We identify and describe a novel gene cluster for collagen utilization, which is a key function in this unique environment. We propose that the interplay between the different microbial taxa is necessary to achieve the complex task of bone degradation in the marine environment.

5.
J Infect Dis ; 223(3): 471-481, 2021 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32601702

RESUMO

Human immunodeficiency virus (HIV) infection impairs mucosal immunity and leads to bacterial translocation, fueling chronic inflammation and disease progression. While this is well established, questions remain about the compositional profile of the translocated bacteria, and to what extent it is influenced by antiretroviral therapy (ART). Using 16S ribosomal DNA targeted sequencing and shotgun proteomics, we showed that HIV increases bacterial translocation from the gut to the blood. HIV increased alpha diversity in the blood, which was dominated by aerobic bacteria belonging to Micrococcaceae (Actinobacteria) and Pseudomonadaceae (Proteobacteria) families, and the number of circulating bacterial proteins was also increased. Forty-eight weeks of ART attenuated this phenomenon. We found that enrichment with Lactobacillales order, and depletion of Actinobacteria class and Moraxellaceae and Corynebacteriacae families, were significantly associated with greater immune recovery and correlated with several inflammatory markers. Our findings suggest that the molecular cross talk between the host and the translocated bacterial products could influence ART-mediated immune recovery.


Assuntos
Bactérias/classificação , Translocação Bacteriana , Infecções por HIV/microbiologia , Adulto , Bactérias/genética , Feminino , Microbioma Gastrointestinal , Infecções por HIV/virologia , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética
6.
J Pharm Biomed Anal ; 193: 113747, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33217711

RESUMO

Obesity has reached an epidemic level worldwide, and bariatric surgery (BS) has been proven to be the most efficient therapy to reduce severe obesity-related comorbidities. Given that the gut microbiota plays a causal role in obesity development and that surgery may alter the gut environment, investigating the impact of BS on the microbiota in the context of severe obesity is important. Although, alterations at the level of total gut bacteria, total gene content and total metabolite content have started to be disentangled, a clear deficit exists regarding the analysis of the active fraction of the microbiota, which is the fraction that is most reactive to the BS. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics and metabolomics in 40 severely obese volunteers. Samples from each volunteer were obtained under basal conditions, after a short high protein and calorie-restricted diet, and 1 and 3 months after BS, including laparoscopic surgery through Roux-en-Y Gastric Bypass or Sleeve Gastrectomy. The results revealed for the first time the most active microbes and metabolic flux distribution pre- and post-surgery and deciphered main differences in the way sugars and short-fatty acids are metabolized, demonstrating that less energy-generating and anaerobic metabolism and detoxification mechanisms are promoted post-surgery. A comparison with non-obese proteome data further signified different ways to metabolize sugars and produce short chain fatty acids and deficiencies in proteins involved in iron transport and metabolism in severely obese individuals compared to lean individuals.


Assuntos
Cirurgia Bariátrica , Derivação Gástrica , Microbioma Gastrointestinal , Obesidade Mórbida , Humanos , Obesidade Mórbida/cirurgia , Redução de Peso
7.
Aging Cell ; 19(1): e13063, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730262

RESUMO

Composition of the gut microbiota changes during ageing, but questions remain about whether age is also associated with deficits in microbiome function and whether these changes occur sharply or progressively. The ability to define these deficits in populations of different ages may help determine a chronological age threshold at which deficits occur and subsequently identify innovative dietary strategies for active and healthy ageing. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics in three well-defined age groups consisting of 30 healthy volunteers, namely, ten infants, ten adults and ten elderly individuals. Samples from each volunteer at intervals of up to 6 months (n = 83 samples) were used for validation. Ageing gradually increases the diversity of gut bacteria that actively synthesize proteins, that is by 1.4-fold from infants to elderly individuals. An analysis of functional deficits consistently identifies a relationship between tryptophan and indole metabolism and ageing (p < 2.8e-8 ). Indeed, the synthesis of proteins involved in tryptophan and indole production and the faecal concentrations of these metabolites are directly correlated (r2  > .987) and progressively decrease with age (r2  > .948). An age threshold for a 50% decrease is observed ca. 11-31 years old, and a greater than 90% reduction is observed from the ages of 34-54 years. Based on recent investigations linking tryptophan with abundance of indole and other "healthy" longevity molecules and on the results from this small cohort study, dietary interventions aimed at manipulating tryptophan deficits since a relatively "young" age of 34 and, particularly, in the elderly are recommended.


Assuntos
Microbiota/fisiologia , Proteômica/métodos , Adulto , Fatores Etários , Idoso , Envelhecimento , Pré-Escolar , Feminino , Voluntários Saudáveis , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...